The standard quantile regression model assumes a linear relationship at thequantile of interest and that all variables are observed. We relax theseassumptions by considering a partial linear model while allowing for missinglinear covariates. To handle the potential bias caused by missing data wepropose a weighted objective function using inverse probability weighting. Ourwork examines estimators using parametric and nonparametric estimates of themissing probability. For variable selection of the linear terms in the presenceof missing data we consider a penalized and weighted objective function usingthe non-convex penalties MCP or SCAD. Under standard conditions we demonstratethat the penalized estimator has the oracle property including cases where$p>>n$. Theoretical challenges include handling missing data and partial linearmodels while working with a nonsmooth loss function and a non-convex penaltyfunction. The performance of the method is evaluated using Monte Carlosimulations and our methods are applied to model amount of time sober forpatients leaving a rehabilitation center.
展开▼
机译:标准分位数回归模型假设在感兴趣的分位数处存在线性关系,并且观察到所有变量。我们通过考虑部分线性模型来放宽这些假设,同时允许缺失线性协变量。为了处理由数据丢失引起的潜在偏差,我们提出使用逆概率加权的加权目标函数。我们的工作使用遗漏概率的参数和非参数估计来检验估计量。对于在缺少数据的情况下线性项的变量选择,我们考虑使用非凸罚分MCP或SCAD的罚分加权目标函数。在标准条件下,我们证明了惩罚估计量具有oracle属性,包括$ p >> n $的情况。理论上的挑战包括在使用非平滑损失函数和非凸罚函数时处理缺失的数据和部分线性模型。使用Monte Carlosimulations评估了该方法的性能,并将我们的方法用于对离开康复中心的患者清醒的时间进行建模。
展开▼